1. Inthe below code, written in intel syntax, how many arguments does this subroutine have?

push ebp

mov ebp, esp

sub esp, &

mov DWORD PTR [ebp-4], ecx
mov DWORD PTR [ebp-8], edx
mov edx, DWORD FPTR [ebp-4]
mov eax, DWORD PTR [ebp-8]
add edx, eax

mov eax, DWORD PTR [ebp+8]
add edx, eax

mov eax, DWORD PTR [ebp+12]
add edx, eax

mov eax, DWORD PTR [ebp+16]
add eax, edx

leave

ret 12

2. Using an assembler show and contrast the differences between the following code once it is
compiled. Do optimizations change the ways the constructs work? Include source code and
assembly.

e The c++ post-fix increment (i++) comparestoi=i+ 1.

e The ternary operator compared to if and else.

e The while, for, and do while loops.

3. In the below code in AT&T Syntax, In the below basic block of assembly, what value is
returned by this subroutine when the last instruction executes.

push %ebp

mov %esp, %Bebp
mov 8(%ebp),¥ecx
mov1Z2({%ebp),¥eax
sub %eax, Becx
mov kecx, Feax
pop %ebp

Ret

4. In the below code, How many arguments does function Five and function Six have?



_Z4fiveiii: _Z3sixin:

push ebp push ebp

mov ebp, esp mov ebp, esp

sub esp, 16 push DWORD PTR [ebp+12]
mov eax, DWORD FTR [ebp+3] push DWORD FTR [ebp+8]
sub eax, DWORD PTR [ebp+16] push DWORD PTR [ebp+16]
mov DWORD FTR [ebp-4], eax call _Z4fiveiii

mov eax, DWORD PTR [ebp+12] add esp, 12

add DWORD PTR [ebp-4], eax leave

mov ecx, DWORD FPTR [ebp-4] ret

mov edx, 1431655766

MoV eax, ecx

imul edx

MoV eax, ecx

sar eax, 31

sub edx, eax

mov eax, edx

mov DWORD FTR [ebp-4], eax
mov eax, DWORD FPTR [ebp-4]
leave

ret

5. Using the same Assembly code as question (4) What is accomplished logically by the
mangled “six” function.

6. Given the instruction: cmp a, b;
Give values for a and b to set all possible combinations of EFLAGS that can be set from a cmp
instruction. Construct a table with the values of a and b and what flags were set.

7. Calculate the value of the eax register when the main function returns.



main:

push ebp

mov ebp, esp

sub esp, 32

mov DWORD PTR [ebp-24]
mov DWORD FTR [ebp-20]
mov DWORD PTR [ebp-16], 2243244
mov DWORD PTR [ebp-12], 34250234
mov DWORD FPTR [ebp-8], 234234
mov DWORD PTR [ebp-4], 0

lea eax, [ebp-24]

push eax

call_Z1fPi

add esp, 4

cwde

leave

ret

123434
8000

El

El

_Z1fPi

push ebp

mov ebp, esp

sub esp, 16

mov DWORD FTR [ebp-8], 0
jmp L2

L3

mov eax, DWORD PTR [ebp-8]
lea edx, [(Heax™4]

mov eax, DWORD PTR [ebp+8]
add eax, edx

mov eax, DWORD PTR [eax]
mov edx, eax

movzx eax, WORD PTR [ebp-2]
add eax, edx

mov WORD PTR [ebp-2], ax
add DWORD PTR [ebp-8], 1
L2

mov eax, DWORD PTR [ebp-8]
lea edyx, [(Heax™4]

mov eax, DWORD PTR [ebp+8]
add eax, edx

mov eax, DWORD PTR [eax]
test eax, eax

Jne L3

movzx eax, WORD PTR [ebp-2]
leave

ret

8. If the following program was ran with arguments 10 and 9, what would be the return value?




_Z1fPIS

push ebp

mov ebp, esp

sub esp, 16

mov DWORD PTR [ebp-4], 9000
mov eax, DWORD PTR [ebp+12]
mov eax, DWORD PTR [eax]
imul edx, eax, 9000

mov eax, DWORD PTR [ebp+8]
mov DWORD PTR [eax], edx
mov eax, DWORD FPTR [ebp+8]
mov eax, DWORD PTR [eax]
mov edx, 9000

sub edx, eax

mov eax, DWORD PTR [ebp+12]
mov DWORD PTR [eax], edx
leave

ret

main:

lea ecx, [espt+4]

and esp, -16

push DWORD FTR [ecx-4]
push ebp

mov ebp, esp

push ebx

push ecx

sub esp, 16

mov ebx, ecx

mov eax, DWORD FPTR [ebx+4]
add eax, 4

mov eax, DWORD PTR [eax]
sub esp, 12

push eax

call atoi

add esp, 16

mov DWORD PTR [ebp-12], eax
mov eax, DWORD PTR [ebx+4]
add eax, 8

mov eax, DWORD PTR [eax]
sub esp, 12

push eax

call atoi

add esp, 16

mov DWORD FTR [ebp-16], eax
sub esp, 8

lea eax, [ebp-16]

push eax

lea eax, [ebp-12]

push eax

call _Z1fRis_

add esp, 16

mov edx, DWORD PTR [ebp-12]
mov eax, DWORD PTR [ebp-16]
add eax, edx

lea esp, [ebp-8]

pop ecx

pop ebx

pop ebp

lea esp, [ecx-4]

ret




Graduate Students:

Produce an assembly file (-s in gcc and .s file) which computes the 13th fibonacci number
consisting of no registers. The filed turned in should be compilable assembly code using
standard g++ and each instruction of the assembly file should not contain standard process
registers (EAX, EBX, ECX, EDX, ESI, EDI) The exception is you are allowed to use EBP and
ESP in this program. You should not use the smaller size aliases of these registers

i.e. You should not use AL in place of EAX,.



